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t THEORY OF A CLASS OF DISCRETE OPTIMAL CONTROL SYSTEMS 

c 

By B. W. Jordan and E. Polak 

Department of Electric a1 Engineering 
University of California 

Berkeley , California 

ABSTRACT 4- 
The problem considered In this paper is that of finding sptunal 

controls for a c lass  of fixed duration processes  in systems described 

by nonlinear difference equations. 

joint system and the Hamiltonian are used in  conjunction with the orig- 

inal techniques found in  the  proofs of the Pontryagin Maximum Principle 

t o  derive conditions necessary for a control to be optimal. 

sa ry  conditions are shown to be related to  the Pontryagin conditions for 

continuous systems in the following manner: the requirement of a global 

maximum of a Hamiltonian becomes a condition of a local maximum or  

The discrete  versions of the ad- 

These neces- 

of stationarity, while the transversali ty conditions remain identical. 
A d-r f f b &  

1. INTRODUCTION 

It has been known for some tune that the Psntryagin Maxunum 

Principle for optimal continuous time systems cannot be extended to 

discrete time systems, except for a few very special cases  (Rozonoer 

1959). This is due to the nature of the admissible control variations. 

In the continuous time case,  in order  to find necessary conditions for 

optimal controls, it is possible to use variations which range over all 

t The research herein reported is made possible through support r e -  
ceived from the Departments of Army, Navy, and A i r  Force  under 
grant AF-AFOSR-139-63; and N a s a  grant NSG 354. 
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adm?ssrble values of the contrc.1 varrable. 

i s  a global result with respect to  the control space. 

discrete time caseo only amplitudinally small variations an the control 

may be taken and thus the most one can expect is  a local condition. 

Thus the Maximum Principle 

However, ;n the 

Although no thoroughly exhaustive attempt has been made before to  

utilize the Pontryagin techniques in constructing necessary conditions 

for discrete time systems, some interesting resul ts  have been derived 

bv L. I. Rozonoer (19591, S. S. L. Chang (1961lp and S. Katz (1962). 

S. S. L. Chang considered a discretization technique for  finding optr- 

mal solutions to continuous time problems bv the use c;f a digital com- 

puter. 

condition t i j  of Theorem i of This paper. Since h l s  c w n c e r n  was with the 

continuous time problem, he did not consider the discrete time problem 

in  any detail. 

In the processs  he obtained a result somewhat analogcus IC. 

L. 1. Rozonoer considered the extension of the Maximum Principle 

to  systems described by linear difference equations. 

modified form of the Maximum Principle which gave not only a neces- 

s a ry  but also a sufficient conditzon for  optimalitv of the control. 

He obtalned a 

S. Katz showed that a further modification of the Maximum Principle 

did give necessary condLtions for nonlinear discrete t ime problems wirh 

no terminal constraints on the state. 

work in this paperp Katz's results were somewhat in e r r o r  and only a 

weaker statement than his i s  possible. 

However, as will be seen from the 

This paper is  devoted to  exploring the exact nature of the general 

resul ts  for discrete systems which can be derived by means of techniques 

similar to the ones used in the derivation of the Maximum Principle. Xt 

is shown that in this case  the Transversality Conditions are identical, but 

that the condition of a global maximum of a Hamiltonian must be changed 

to that of a local maximum or a stationary value. 

- 2- 



2. FORMULATION O F  THE OPTIMAL CONTROL PROBLEM 

2.1 System Equations 

Consider a system which satisfies the difference equations, 

- x(k) = - xjk-1) + - -  f [x(k-1l9 - ~ ( k - l ) ]  k = 1, 2 , .  . . i l l  

where 

x = col (x  e .  e ?xn) E En 
1: - 

is the state, 

i s  the control and 

(4) 
n - f = col ( f  l s . o .  # f n )  E E . 

U is assumed to be defined so that if u1 E U then there exists an 

E > 0 and a & u such that u' + E 6 u E U. It is also assumed that i f  
2 2  2 2  u ' + E ' ~ U ~ E U , U ' + E  & u  r U , t h e n u ' +  - A ~ ' & u ' + ( l - k ) ~  - b u  - E U ,  

0 < X < 1. 

- 
- - - 

- - - - 
It is also assumed that - -  

Assume that x(0) is given. Then, i f  the control sequence - 
A = [ - ~ ( 0 ,  K - I)] [ - uQO), - u(K - I)] 

is given, the trajectory 

can be computed. 
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2. 2 Initial Conditions 

Since the difference eqns. (1) do not depend on k, it will be 

assumed that the starting time is always at k = 0 and that the 

initial value of the state is  always given as x ( 0 ) .  - 
2. 3 Terminal Conditions 

Time: It will always be assumed that the number of time steps 

over which the system is operated is fixed at K. 

State: There a r e  two possibilities which wil l  be considered as - 
terminal conditions on the state. 

n 
i )  Assume that a closed, convex set S C E  is given. It is 

required that at the f inai  time step) 

S, [ i. e. x(K) E SI. This definitlon allows S to be a point 

in En, a subset of En, or  the whole of En. 

the second type (i. e. a closed, convex subset of E having 

more than one point), it will be assumed that it has no sharp 

edges. (i. e. at  each point on i t s  boundary surface a unique 

tangent plane exists). 

K, tne state i ie in 

- 
Xf S is of 

n 

ii) It is  also possible that S maght be an (n  - I )-dimensional 

manifold described by the I equations 

In this case,  S need not be convex, it will be assumed 

however, that the g have continuous partial  derivatives 
i 

with respect to  the x and that gradx g. # 0 for any i 1 

- x c  s, i = l ,  ...) I .  

2 .4  Cost Function 

Assume that the cost  of a transition from the state x(k - 1) to - 
the state x(k) caused by the control - u(k - 1) is given by - 

- 4- 



fo[x(k - I:, E;k - l j ] .  

frcm time step zero to time s?ep k, Then x (k; IS the solution cf 

the difference equation 

Let x (kb be the cost of cperatjcg the system 
0 

C 

t 699 

with x (0) = 0. It is assumed that f E C' on En x U. 
0 0 

That this is a general cost function i s  demonstrated by S. Katz 

(1962). 

2. 5 Extended System Eq.Jat%ons 

Now, for convenience, the system equations wil l  be extended to  

include the cost variable by defrning the in t 1)-dimensicnal vecters 

- A  
f = col (fo,  f )  . - - 

The system equations become 

- 
- xtk) = - x(k - 1) t - -  f [ x(k - a) ,  E(k - l)] . 6129 

c *- 

Then given - x(0) and [u(O.K - = l ) ]p [xIO,K)] - can be determined 

and x (X) will represezt  the cost incurred in  eperzting rhe system 

over the time sequence [ 0, K] e 
0 

2.6 Problem Statement 

The fundamental optimal control problem for the systems under 

consideration will  be denoted by P-l and can be stated a s  

P-1: Given the positive icteger K 2nd the initial state x(0) 
z 

- - 
for  the system described by (12)9 find the sequence 

of controls [ u(0, K- l ) ]  

xiK) E S and so that x (K) is minimized. 

so that - U(I) E U ,  i = 0,. -., K - I ,  - 
0 - 
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Definition: The sequence [ ~ ' ( 0 ,  K - I)] which minimizes x (K)# 
0 

and satisfies the boundary conditions of P-1 will  be called the 

optimal control for P-1 and the corresponding trajectory [ x (0, K)] 
will be called the optimal trajectory. 

- 

-* - 

3. NECESSARY CONDITIONS FOR AN OPTIMAL SOLUTION 

3.1 The Adjoint System 

Define the (n t 1) x (n  t 1) matrix 

A a f l  F(k  - 1) =- e 

and the (n t 1) x r matr ix  

-. 

Now the adjoint variables a r e  defined as satisfying the following system 

of difference equations 

E(k - 1) = 

Since this system of equations is homogeneous, all that is needed 
-- 

to generate the trajectory of the adjoint system is the knowledge of p(IC). 
e 

- 6 -  



The determ1nat:on of this vector wall be a major consideration of 

this work. 

a f ,  [ x(k - 1): u(k - l)]  
1 -  - 

Notice that = 0, i = 0 9 1 B Z 3 . e o 9 n .  axo (k - 1) 

Consequently, p (k - 1) = pO(k)B k = 1,2, D . .  , K. 
In other words p is  constant for all k. 

0 

0 

3. 2 The Hamiltonian 

The Hamiltonian is defined as 

It is seen that the system eqns. (12) and the adjoint system eqns. I151 

can be written in t e r m s  of the Hamiltonian: 

8 x(k - 1) 

Now the cond;tions necessary for the contrcl [ u"10, K - l)]  to  be opr:. 

mal can be stated. 
- 

3. 3 Theorem I 

If [ u'(0, K - 1>] is an op tma l  control for P- 1 and [ ~ ~ ' ( 0 ,  K)] is  the - - 
L corresponding optimal trajectory, then there  exists a function p A tdloe, - 

k = 0,1, * .  K, satisfying (15) such that 
u - * 

i) H[p (k), x (k - l),  u*(k - l)] = <px(kjn f [x r (k  - l ' ,  3;l"jk - 1 ]> - -  - - 4 - - 
is a local m a x m u m  or stationary with respect to 

u"(k - 1) E U at each time step 1 C k < K - -  e 

ii) p:(K) - < 0. 
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Discussion: 

minal conditions. In other wordsp no matter what form S takes, 

the conditions of this theorem must be fulfilled. 

a test  for determining i f  a control [u(OsK - - l)] can be optimal. This 

tes t  is performed by computing [ - x(0, K)] and [ ~ ( o ,  K)] and inserting 

these values into the Hamiltonian. The Hamiltonian i s  then checked 

to see if it is a local maximum or  stationary for these values of 

x(k - l), p(k) and u(k - 1) with respect to  - u(k - l)# for each k, 

1 < k < K. 

local maximum or  stationary point for  H [ ~ ( k 9 >  x(k - l I 9  - u(k - l)] 

Then, using Condition i of Theorem I, u(k - 1) can be found in t e r m s  

of x!k - 1) and plk). The control u(k - 1) can then be eliminated 

from the system eqns. (12) and the adjoint system eqns. (15). There 

This theorem is basic and holds regardless of the ter- 

The theorem gives 

- 

... 
- - - 

Also, in a large number of casesp  there may be only one - - -  
- 

s 

- - - 

a r e  then (2n t 2) homogeneous equations for which (2n t 2) initial 

conditions must be found. 

- x(0). 

solution. The vector p(K) wil l  depend upon the form of the constraint 

set and will  be discussed. 

There a r e  (n t 1) boundary conditions, the 

Knowledge of the (n t 1) boundary conditions - p(K) will give the 
,.# ,.# 

a 

- 

Theorem I will  be proven by examining each type of terminal con- 

st ramt in turn and establishing the Transver sality Conditions for each 

ease. 

I1 - V. 

These Transversality Conditions are developed in Theorems 

It will be shown that for each type of terminal constraint, the 

conditions of Theorem I are necessary. 

The basic technique to be used wil l  be to assume that the optimal 

The eontrol wil l  then be perturbed 

The necessary condi tans  

control and trajectory a re  known. 

s o  as to  affect the trajectory only slightly. 

which the optimal control must satisfy will then a r i s e  from the re- 

quirement that any admissible perturbed control which SaEisfzes the 

terminal constraints must not result in a lower cost. 



The first item, then, to be considered is the effect u p n  the t r a -  

Since the value of - x(0) 

Only pe r -  

N 

Qectory of small pe r tu r t a t~ons  in the control. 

is given, no perturbations af its value need be considered. 

turbations in each control vector u(i), i = 0,. - .  , K - 1, must be 

considered. 

discrete time problem and the similar one for continuous time prob- 

lems occurs. It is required that any perturbation must i) be such 

that the perturbed control i s  admissible, and i n )  affect the trajectory 

only slightly. In the continuous time problem, the control is assumed 

t o  be measurable. Consequently, the perturbed control can vary from 

the original control by large amountsp provided the length of time, 

over which the perturbations - a re  large,  is small. This allows one to 

search out all of the control space at each time and to therefore require 

that the Hamiltonian be an absolute maximum at each instant of time. 

- 
It is at this point that the basic difference between this 

In the discrete time problem, however, the only perturbations 

which have a small effect on the trajectory a r e  small perturbations. 

Consequently, only local conditions can be obtained. 

3.4 The Variational Equations 

Consider, then, the effect of a perturbation an the control. Assume 
* - +  

that the optimal control [ - u ( 0 9  K - l)] and the optimal trajectory [ - x (0, K)] 

are known. 

t rol  be admissible. 

Then perturb the control and require that the perturbed con- 

F * Let [u(O,K - l)] = [U - (0) f c 6 - U(O)a e , U  - (K - 1) + E bu(K - = l?]  be 

the perturbed control where F > 0 is a small number mdependexxt rjif k. 

Then [ - ~ ( 0 ,  K)] = [ - ; C * ( O ) ,  X h ( l )  + 6 - XCl), 

perturbed trajectory. 

- - - u 

, - x"(K) + 6 - x(K)] W I ~ P  be the 

Then 
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.= 

x U,  i = 0,1,. . . n t 1 and since dx(0) = 0, n t l  
- Since f .  E Cs on E 

1 

where 

Let 

D(i) = (1 t F(K - 1)). . . (1 t F(i t 1)) B(i) 

K-1 

i=O 

A n t l  - 
y(K) = 2 Dli) 6 u(i) E EK , - - 

. n t l  n t l  by translating the origin of E ntl is obtained from E K where E 
f .. 

to  xii(K1. Define the set 

% &  
K . ., 

This is a convex cone and will be called the "cone of attainability" due 

to a similar definition by Pontryagin. 

It is obvious that R K  is convex since i f  

1 K-1 -1 - y QK) = 2 
i= 0 

Dei) 6 - u ( ' j )  
E XK 

and 

then 

-10- 



** Notice also that x (K) E '% 
Ew)-.)=OJFO, - 1,. . 
Finally notice that - q(k) satisfies the difference equation 

and is the vertex of the cone since for 
K e. - - 

, K - 1, b - f; (K)S  0 which corresponds to x(K) = - x*(K). 

- 
d y(k) = - Y(k - 1) + F(k - 1) - Y(k - 1) + B(k - 1) 6 - u(k - 1) . (23) 

3.5 Case 1: Right End Constrained to  Lie on a Smooth Surface 

Let the constraint set S be an (n - 1 ) -  dimensional manifold 

de scribed by 

Since each 

ag. /8x # 0 ,  i = 1, for  x E S, there  is an (n - 1 )-dimensional 

plane, T ,  tangent to  S at each x E S described by 

has continuous first partial derivatives and since 
" j  

e ,  1 - J -  
- 

Now construct the (n + 1 -1 )-dimensional cylinder defined by 

1 - -  s = [ E  x =co1 (x X ) , X f  SI,  - -0' - 
1 1 (see fig. 1). It has been assumed that - i * (K)  E S . The cylinder S 

-* will have an (n + 1 - 1 )-dimensional tangent plane at x (K) described - 
by 

T1 = [x I ? =  col (x ,x), x L T] . - 0 

n 
Clearly, the projection of T1 onto E 
to be the tangent plane to S at x*(K). 

is T, where T is assumed 

- - 
Construct the hyperplane C passing through - xv(K) perpendi- 

cular to  the x axis. 
0 

-11- 



a u 

C = [x - 1 xo .= xO(K)]  . 
1 The hyperplane C will  cut T into two semi-infinite planes 

1t - - T = [ x I x ~  T,  x 'X;(K)1 0- - -  

1 * e -  

T1- = [ x  - -  I x E T, xo - < xo(K)] 

with the common boundary 

(312 
1" 1 T = C f ? T .  

1 C will a lso cut the cylinder S into two semi-infinite cylinders 

(32) 
1 * 

S1+ = [ - -  x 1 x a S xo - > xo(K)] 

E 33) 
1 

S1- = [x - -  Ix E S xo 5 x$K)] 
- -  

with the common boundary 

10 1 s = cns * 

be an a rb i t ra ry  n-dimensional vector lying in T. 

vector consisting of the last  n-components of - p(K). 

Let EQK) be a 
.?3 

Then for this case,  the following theorem holds: 

-12 - 



Theorem II 

Consider the problem P-1 when the constraint set S is an 

( n  - I )-dimensional smooth manifold defined by (30). 

s a ry  conditions that 

Then, neces- 

[u*(O, K - 111 be an optimal control are 

i] The conditions stated in Theorem I. * 
ii) p (K), > = 0 

where p(K) was defined in (35) and - 6 is any vector 

lying in T tangent to S at - x (K]. 
- 

.% 

Proof 
x% Since [ u (0,  K-l)]  is a n  optimal control, it is necessarv that 

any admissible perturbed control, whose corresponding trajectory 
striisfies itle 'esililila: eoil&iiG.ns, __ - &  I_--- 1 - - -L  

l l U L  ggLve: a l .uwe1 L U 5 L a  

requirement to  be fulfilled, it i s  necessary that there exist a hyper- 

plane separating % and T . This 1s shown by establishing 

Lemma I. 

- 

Ftr  this 

1- 
K 

Lemma 1 

Let [ ~ ' 2 \ ,  K)] be the trajectory corresponding to  [ - ui0, K - l)] and - - 
starting at  ~(0). Let G be a I - < n-dimensional smooth manifsld w1t.h 

an edge, G in and let  $(K) F, G a Let L be the half =plane 

tangent to G at  x(K). 

- 
e - 

u 
e 

a 
- 

If  the cones P̂( and L, having a common vertex at x ( K ) ,  a r e  - K 
not separated, then 

ponding trajectory 

but x'(K) 4 G a e - 
Proof of Lemma P 

there exists a control [ us(03  K - l)]  with a .cc;rres = 

[ - x'(0, K)] , starting at - x(O), such that - x':Kj F, G 
c 

- - Y 

This lemma can be proven in a manner identical to the proof of 

Lemma 10 in L. S. Pontryagin (1962). 

-13- 



Let us apply this lemma to the proof of Theorem PI. It follows 
1- 

from Lemma I that if the cones RK and T having the common 

vertex x*(K), a r e  not separated, then there exists a control [ur(O, K - l)] 

with a corresponding trajectory [x'(O,K)]  such that x'(K) l ies in S 

but not on the edge of S 

and have a lower cost. 

- - - 
1- - 

1- 
and consequently will satisfy the constraints 

Therefore, for [ - u"(0, K - 111 and [ x*(O, K)] to  be optimal, it is 

necessary that there exist a hyperplane, call it A, separating "k 
T 

normal to  A. Choose the direction of a so that 

and 

..., a ) b e t h e  
,-- K 

Let the (n + 1)-dimensional vector a = col (a 1- 
0' ai9 n t l  - 

c 

- 

then 

-* 10 Clearly, the hyperplane A contains x (K) and T Let - 
5 = col ( E l 9 . .  . , E  ) be any vector in T. Then - 5 = col ( 0 ,  - e )  will be 

parallel  to TlO. Since T C A,  < a, e >  = 0. But e = 0. There-  
- -  10 n - 

0 - -  

Since x does not appear in the constraint relation ~,30), any 0 * paint lyEng on the vector emanating f rom - x (K) and pointing in the 

direction - 7 = col ( - lo  0, 0,. e .D) belongs to T . Consequently, from 1- 

the way a was chosenp it follows that - 

x -  

But <a,  q > = -a > 0 and therefore 0- - -  

a o < O .  - 

-14- 



u 

Since - y{K) c qK, it follows from (36) that 

Now choose a special perturbation in the control. Let the control be 

perturbed at only the vth t h y  step, 0 - -  < v < K - 1. Then 

p% - u ( k ) = u  - (k) k = O , . e e ,  v - 1 ,  ~ t l ,  . . e g  K - 1  (41) 

and 

U(.) = U*(V)  t E 6 u(v) - - - 
k 

h 

a 

6 x(k) = 0, k C Y - - (43) 

- -* - -* w 

6 X(Y t 1) = f[x (v), - U*(V) t E 6 - u(v)] - - -  f[x (v), - U * ( V > ] .  (44) - - -  

8 r [ x " ( V ) ,  U*(V)] 
Let - -  - M 

y(v t 1) = 6 - u(v) .  - 8 U  

Now consider the adjoint system (15) 

Since d u ( k ) = O  - k = v + l , .  . . , K - 1 .  

for k = v + 2, , K .  

i47)  

-15- 



Therefor e 

L u - 
Now let - p(K) = a. 

( 40) become s 

Then since - y(K) E RK2 the necessary condk?ion 

From (48), (49) becomes, 

or  from (45) 

(491 

i 50 )  

, 
(57) 

Equivalently, it is necessary that H(v + 1) be a local maxsymun or 
* stationary with respect t o  u i w ) .  Since the choice of M was arb-krarv,  

a necessary condition be an optimal control 1s rhar 

H j v )  be a local maximum or  stationary for 1 < i4 < K. 

- 
that [ u * l O ,  K - I)]  - 

- -  
This shows that €or these terminal conditions, conditicn i d !  sf 

Theorem 1 is  necessary. Since p (K)  = a < 0 eonditicn i t  c f  Tzecrem 2 

i s  necessary. Finally, from j50) 
0 0- 

n 

This campletes the proof of Theorem I;. 

3 ,  6 Case 2; RLght End Constrained +? L:e at a Pc:nt 

n 
Next consider the problem when S I S  a point zn E . For  *his  

problem, the following theorem holds. 

-16 - 



Theorem 1.E 

Consider the problem P -1 when the constraint set S Js a point 
1. 

in En. 

control are 

Then, necessary conditions for [ ~ ~ ( 0 ,  K = l)] t o  be an riptima1 - 

i) The conditions stated in Theorem I. 

Proof 
w Since S is a point, S1 is a line perpendicular to E {i. e.  

parallel to the x 

infinite line consisting of those points in S1 below or  in C. 

axis) and passing through S. SI- is the semi- 
0 

Clearly, 
1- 1- 

T1- = S e 4t follow from Lemma 1 that WK and S must be 
u 

eeparated by the hyperplane A ,  with its normal a. A s  in Theorem 11, - 
a. 5 C. I T  

m 10 ~ i i e  niay C . , ~ G G S ~  n u w e v c r ,  zs~ i i~e  I i i i  p ~ h t ,  trans- 

versality conditions need be imposed on a. Proceeding as En Theorem - 
Y I 

it 1s found by letting E(K) = a that conditions i) and ii) of Theorem - * 
I are necessary for [ u (0, K - l)] to  be an optimal control. Q. E. D. - 
Remark 

Note that no ccnditions are  imposed on the values of t5~e Past 
Fs 

n-components ~f p(K). - 
3.? Case 3: Free Right End -- --- 

Consider the problem where S is the whole space: En. In other 
n words, S can l ie anywhere in E For thbs set of terminal candit:ons 

the following theorem holds. 

Theorem IV, 

Consider the problem P-1 when the constraint set S 

necessary conditions for [ - ~ ' ( 0 ,  K - l)] to  be an  optimal 

i) the conditions stated in Theorem 1 
* 

1 2 )  pi(Kj = 0 i = 1,2 , .  . . , n .  

=En.  Then, 

control ares 

-17- 



Proof 
1- n+l Clearly, S will be the closed half-space in E conslsting of 

10 all points lying below o r  in C- Let T be an a rb i t ra ry  line in C 
- 8 1- 

passing through - x (K) and let T 

consisting of those points lying in T or  directly below it. It follows 

from Lemma I that T RK must be separated by some KyFer- 

plane A with its normal a It follows from Theorem I1 that - a mmt 

be perpendicular to  T = But T has a rb i t ra ry  dnrecticn in C 3  COR- 

be the semn-infinite hyperplane 
lo 

1- and 
I - 
- 

1" 10 
- 

sequently, a mxist be arthogonal t o  any vector rn C,  I- e. E t o  C itself, 

It can only have the vaiue 
- 

and therefore A coincides with C. Prceeeding as :z1 Thecrem I, arid 

letting p(K) = a 

and 12 addition the Trazlsversality Csndfticns 2) of Theorem IV arc 

shown tc be necessary. 

- - 
tne cond-tEons of Theorem I a r e  shewn t o  be neeessar), - - 

3.8 Case 4: Rigkt Ecd Corrstrained to L,e En an n-Dimen,c.sr,ai 

Subset of En 
n 

The problems where S ..s a po;nt :R E a man-fold cf d;mecs.cn 

1 - I < n and the whcle G f  En ha-<-e t een  ccns2dered. 

left 1;s that where S LS an ri-dLmens:or-abl Froper subset c f  E . A s s m e  

that S is closed and convex. 

The cd'v F r -  ; > e m  
?, 

s1 ~ wi l l  be a semi-xtsP,te cy lxde r  cocsisting cf all :hose p 
1 fn S whxh  lie i'z or below C. Twc possibll2ties CP? cczur. ( s e e  

frg. 5). 

Case A :  

T be the tacgent p k ~  - 

1 c 

X"{K) msy I:.e on The surface of s~. It wikl alsc lie tn C.  et 
1 - i c  

- 
Si at X~ IK). T w3? be cut in Plaid by C. 1 

Let TIt aqd TI- be *;he ;+Fer .x.d Power halk-es ds before 
z Y 

ccmmcr, boundary TIC = C fl T". Let - h be rhe ncrrmal t z  T a& 

-18- 



Let c be the q w a r d  pointing ? ; rmd to C ,  - 

-* 1 
Case B c  x iK) may lie in the interior of S It will  skill ::e In Co 

In this ease there will be no concept of a tangent plane and - h will  &e 

defined as tRe zero vector 

h = col io, 0, 0 )  . - 

The vector c w 2 l  be as  in c k s e  A - 
Then in e:ther case the following theorem hclds. 

Theorem 5 

Conslder the problem P-1 when the constraint set S 1s a clcsed, 
n convex, n-dimensional subset of E Then, necessary candvtians 

for [u (O,K - l)] t o  be ar- cptimal control a r e ,  92. 

- 
1) rhe conditions stated In Theorem 1 

..) p iK) = Ah -+ pe 
- >p. a <> 

- - - 
where k p a r e  nonpc;s;tive ccnstantts. 

Cons7der Case B. This srtuaamn 3 s 

right end and Theorem IV holds. Slnce h = 0 r.n thrs c a s e  - 

But f rom Theorem .Y it s seen rhat p - 0. Therefore Theorem V 

is t rue for Case B. 
9 "  

Ccns<der  Case A. Let L be a hzJf-hyperpiane having T a s  3% 

1 edge and i3tersect~ng S 

must be separated from L. Therefore, Cn/rK must be separated 

Then ;t follows from Lemma 1 that 

-19 - 



from the closed cparter-space,  Qz bounded frcm a b r - e  bv C and 

from the side by T Let A be the hyperplane wh;cfr s e p r a t e s  
1- 

RK f rom Q and let - a be the normal tc  A which pox?t,s -ntc Q. 

Then - a will l ie In the space spanned by h and r and will  lte 

berween rhem. Therefore a can Ire written as a negatlve linear 

combination 0f h and e 

e, - ,- 

- - 
6 

- 
- 

c4 

- - 

- J L 
T 

Then proceeding as  in Theorem I1 and letring p tKj = a ,  the s o v  

ditions of Theorem i are shcwn tu Se necessdrv a d  :n add.f- X I  the 

Transversali ty Conditions (11) of Theorem V are shcwn T G  be nece5 

- - 

The condit.ens of Theorem I have been shcwn to be necess5rxr ?:,r 

each terminal constralnt under cons:deranon0 

of Theorem I i s  completed. 

Therefore, the. prccf 

4. CONCLUSIONS 

This paper demonstrates the extent to wh;ch the t echr  ques used 

cbta-9 a In the construction of the Maximum Principle can be used 

related necessarv oFtzmalitv cond;tion for djscrete time Frob:erns %I* 

which 2,s not necessarily a maximum cond;tnon. 

It IS interesting to  see that Rozonoer's asser fxm.  that the "exten- 

sion of the Maximum Przncaple to drscrete systems zs  pcss-ble ,  geRer- 

ally speaking, only a,n the linear casep  " is correc t  and +hat the r c r r e s -  

ponding necessary conditions for the nonlinear case a r e ,  an f a c ~ ,  weaker 

1 than thcse given by- Pcntryagin, ( 2 -  e .  the Hamiltonian 1s r e q x r e d  *c 

be onlv a lccal maximum a r  stationary rather than an absclute rnaxsmxmj. 

In many systems, hcwever, the Hamiltonian w-1; have o d v  cre 2c:al 

maximum cr statzonary point and f o r  these problems, the ree t l l t e  derzc-ed 

here  a r e  as  useful as thcse derived by Pontryagin. 



8 . 
. 

Also noteworthy : s  the  €act that K a t z ' s  e.cr,rl ..s.crt t k : ~  7r.e 

Hamilton;an must be d local maximtrm. IS -,OF q i  t t  I r-rnFie:e d&e to 

his neglect of second order terms. *n;s paper" 

it is only necessary that the Hamiltonian be a lccali maxamsm or  

stat ionar yo 

Rather, as shown 

There is one specific problem in which all the assumpxisns of 

this paper need not be met. 

3 .  '7 of this paper) which w a s  considered by Katz, the control con- 

straint  set U need not be restricted as In the other rases. For 

this case zt ? s  c d y  necessary that for any u' s U, there  exzst some 

c and some 5 u such that U~ 4 Q 6 u Q U: iL. e.  i t  is not ~r?ecessary 

that the set [ 6 u ui i- E 6 u E U for some E ] be convex. The reascm 
1- n+l for this IS that S for this case is a whole half space in E a-d 

the separating hyperplane is uniquely defined. 

proofs no longer depend on the convexity of 

In the free right-end case (see Section 

- 
- ._ - 
- -  - 

Consequentlv, the 

K' 
For all cases  considered here,  it is possible for *he contra1 

constraint set  to change with the time step k [ 1. e .  "J = U;k j ,  

vided that each of the U(k) ,  k = 0,1, ,K - 1, : s  an admrse:ble 

straint set, 

It 5s hoped that the resi l ts  presented in 7 h i s  p a ~ e r  w:,:  tie'^ 
complete the theory of optimal control systems. 
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